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Charge optimization leads to favorable electrostatic binding free energy
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Variational optimization of molecular electrostatic charge distributions is a tool for the study of association
reactions of molecules in solution. In principle, this method can be used in drug design and protein folding to
analyze and improve molecular interactions and to provide electrostatic templates for molecular design. This
optimization problem reduces to an inverse source problem in classical electrostatics, where the sources are
determined by a combination of external and self-polarization potentials. In this paper, we show that the
electrostatic portion of the free energy of association for electrostatically optimized molecules has an upper
bound of zero in many situations of physical interest. That is, variational optimization provides a ligand-charge
distribution that contributes favorably to the energetics of binding, even in a strongly polar medium. This
stabilizing effect on association reactions is contrary to the usual role of electrostatics in aqueous complexes,
in which desolvation effects generally dominate. We also show the existence and nonuniqueness of the varia-
tional solution and make a connection to the electrostatic image charge problem.
@S1063-651X~99!08305-1#

PACS number~s!: 87.15.Nn, 41.20.Cv, 82.60.Hc
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Electrostatics play an important role in the association
molecules in solvent. Complementary electrostatic inter
tions are determinants of specificity@1–4#, but are currently
believed to contribute unfavorably to the free energy of bin
ing near room temperature~see@5#, and references therein!.
Recent work has shown that a carefully designed charge
tribution for one reactant can lead to an electrostatic con
bution to the binding free energy that is optimal and fav
able ~negative! @5–8#. While some theoretical details of thi
variational optimization process have been elucidated@6,7#,
many properties of the resulting charge distributions, incl
ing their implicit utility for molecular design, remain unad
dressed. In particular, no theoretical bound has been pla
on the electrostatic binding free energy of the optimu
Herein we demonstrate that optimization leads to a favora
electrostatic contribution to binding; that is, variational op
mization guarantees successful electrostatic charge dist
tions for use in molecular design. We also demonstrate
existence and nonuniqueness of optimal charge distribut
and make a connection between variational optimization
the method of electrostatic images.

THEORETICAL BACKGROUND

Figure 1 depicts an example of an association reactio
which two reactant molecules, a ligand~l! and receptor (r ),
associate rigidly to form a complex (c). The free energy
change of the solution due to binding in the standard s
can be separated into electrostatic,DG es

0 , and nonpolar,
DG np

0 , contributions@9,10#, whereDG np
0 represents the stan

dard binding free energy of the reactants when their cha
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distributions are everywhere zero.DG es
0 can be obtained in

the continuum electrostatic approximation, wherein the s
vent is treated as a dielectric continuumes , the molecules
( i ) as rigid dielectric cavitiesem with embedded charge dis
tributionsQi(x), and the system obeys the Poisson equat
Here we restrict the molecular cavities to closed, bound
regionsVi with regular bounding surfacesSi ~note thatVi
may contain continuum-solvent cavities bounded by regu
surfaces!. Denoting byGi(x,y) the Green function for the
Poisson equation satisfying the boundary conditions for m
lecular cavity (i ) alone in solvent, the electrostatic free e
ergy of molecule (i ) is 1

2 *dx dy Qi(x)Gi(x,y)Qi(y) @11,12#.
DG es

0 is the difference in the electrostatic free energies of
product and reactants,

DG es
0 5

1

2E dx dy$Qr~x!@Gc~x,y!2Gr~x,y!#Qr~y!

12Qr~x!Gc~x,y!Ql~y!

1Ql~x!@Gc~x,y!2Gl~x,y!#Ql~y!%. ~1!

The molecular coordinate systems have been chosen, wit
loss of generality, such that the charge distribution and c
ity of the complex is the superposition of the charge dis

ic
FIG. 1. Example binding geometry showing rigid ligand a

receptor molecules associating in a unique arrangement to for
complex.
5958 ©1999 The American Physical Society
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butions and cavities of the reactant molecules,Qc(x)
5Qr(x)1Ql(x), when their unbound-state coordinate ax
are aligned. Note that the cavity of the complexVc is the
union of the ligand and receptor cavities, which have at m
a set of regular surface elements in common~i.e., their vol-
umes do not overlap in the bound state!.

We have shown in other work@6,7# that Eq.~1! can be
variationally extremized with respect toQl(x) for a fixed
receptor-charge distributionQr(x). The resulting ‘‘comple-
mentary’’ ligand-charge distribution,Ql

comp(x), is given by a
solution to the Fredholm integral equation of the first kin

E
Vl

dx Ql~x!@Gc~x,y!2Gl~x,y!#52E
Vr

dx Qr~x!Gc~x,y!

~2!

;yPVl .
In the following sections we show that a complementa

ligand exists that represents a nonunique minimum to
electrostatic binding free energy. The perhaps surprising
sult of nonuniqueness arises from the fact that the optim
tion condition ~2! defines properties of the potential of th
complementary ligand, and a family of related charge dis
butions can create the necessary potential. With this form
ism, we then demonstrate that the optimized electrost
contribution to the binding free energy is favorable when
receptor and ligand do not both contain buried solvent ca
ties. The implications are discussed in the conclusion.

EXTREMIZATION OF DG es
0

For the extremum of Eq.~2! to be a minimum, the ligand
desolvation ~dehydration! penalty must always be non
negative. It represents the cost of changing the dielectric c
stant fromes to em in the regionVr adjacent to the unboun
ligand,

DGl
hyd5

1

2EVl

dx dy Ql~x!@Gc~x,y!2Gl~x,y!#Ql~y!

5
2~em2es!

8p E
Vr

dx El~x!•El
0~x!, ~3!

whereEl
0(x) is the unbound ligand’s electric field andEl(x)

is the electric field after alteration of the dielectric consta
@11,12#. This can be approximated in terms of a sum on
perturbations to the dielectric constant,

DGl
hyd'

2de

8p (
j 50

n21 E
Vr

dxuEl
j~x!u2, ~4!

whereEl
j (x) is the electric field around the ligand when th

dielectric constant inVr is es1 j de and de5(em2es)/n.
This approximation becomes increasingly exact asn→` and
shows that the desolvation penalty is non-negative forem

,es ; therefore, the extremum minimizesDG es
0 for em,es

and Ql
comp(x) binds the receptor with the most favorab

electrostatic binding free energy,DG es
0,opt, for the stated ge-

ometry @7#.
The desolvation penalty arises from a change in the

electric constant of a region, such asVr , altering the elec-
s

st

y
e
e-
a-

i-
l-
ic
e
i-

n-

t

i-

trostatic potential throughout space and changing the
energy of the system. However, a charge distribution pla
in Vr such that the potential in the region exterior toVr ,
denotedV̄r , has the same form it did before the dielectr
constant was modified, is commonly referred to as an im
charge distribution@11,12#; the original charge distribution
in V̄r is the inverse-image charge distribution. When Eq.~2!
is satisfied,Qr(x) causes the potential inVl ~where all
charges external toVr are located! to be the same before an
after binding; however, the potential is not necessarily u
changed inV̄c . In this case, we refer toQr(x) as a general-
ized image charge distribution forQl

comp(x), andQl
comp(x) as

a generalized inverse-image charge distribution forQr(x).
The term ‘‘generalized’’ may be dropped in cases where
potential inV̄c is unaltered upon binding.

THE COMPLEMENTARY CHARGE DISTRIBUTION
IS NONUNIQUE

It suffices to demonstrate the existence of a nonzeroQl(x)
in the null space of Eq.~2!, satisfying

E
Vl

dx Ql~x!@Gc~x,y!2Gl~x,y!#50 ~5!

;yPVl . A solution to Eq. ~5! shall be denoted a ‘‘null
charge distribution.’’ Any spherically symmetric distributio
of zero total charge located entirely withinVl produces a
zero potential exterior to itself by Gauss’s law and the co
vention that the potential vanish at infinity~the interior po-
tential is entirely coulombic!. Any superposition of such
charge distributions is a solution to Eq.~5!, Q.E.D. This
nonuniqueness implies a family of solutions to Eq.~2!. In
practice, when solving Eq.~2! with a finite basis set~e.g.,
point charges, multipoles, or chemical groups! representing
Ql(x), the inherent degeneracy reduces to a space spa
by at most a finite basis set, which defines a set of differ
but useful optimized charge distributions.

THE COMPLEMENTARY CHARGE
DISTRIBUTION EXISTS

We show the existence of aQl
comp(x) for anyQr(x) under

the condition that the receptor cavity is not totally encap
lated by the ligand cavity. First, consider the set of functio
D5$*Vl

dx Ql(x)@Gc(x,y)2Gl(x,y)#% defined byQl(x) tak-

ing on all possible values.D is a closed space of harmon
functions on Vl because its elements satisfy the Lapla
equation, the set of allQl(x) is closed, and the integral ove
the Green functions is a continuous mapping from cha
distributions to potentials@13#. Next, consider the setF of all
harmonic functions on Vl with the inner product
^ f (x)ug(x)&5*Vl

dx f (x)g(x). This space is complete be

cause any Cauchy sequence fromF converges uniformly to
some function@13# on Vl and therefore also onSl ; addition-
ally, becauseVl is a closed region of space, the sequen
converges to a harmonic function@14#, an element ofF. It
can further be shown thatF is a Hilbert space@13#.

Now, suppose that a receptor-charge distributionQr(x)
exists for which there is no solution to Eq.~2!. Without loss
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of generality, we can additionally assume that the harmo
function f (y)52*Vr

dx Qr(x)Gc(x,y) over Vl is in the or-

thogonal complementD' of D because iff (y)PD then
there would be a solution to Eq.~2!, andD is a closed subse
of F, soD%D'5F @13#. Then, due to the orthogonality o
f (y) to the elements ofD, we must have

E
Vl

dx dy Ql~x!@Gc~x,y!2Gl~x,y!# f ~y!50 ~6!

;Ql(x). Interpretinga f (y) as a ligand-charge distribution
wherea merely converts units of potential to units of char
density, it is clear from Eq.~6! that a f (y) satisfies Eq.~5!
and is thus null and has a zero desolvation penalty. By E
~3! and~4!, the electric field inVr due toa f (y) in the bound
and unbound states must be zero and the potential a cons
Using the harmonic continuation theorem@14# in the bound
state coupled with the condition thatVr not be encapsulate
by Vl , it can be shown that the potential inVr due to the
ligand-charge distribution is zero, s
*Vl

dx a f (x)*Vr
dy Gc(x,y)Qr(y)5052a*Vl

dx f 2(x). Con-

sequently, f (x)50 becausef (x) is a harmonic function;
however, if this were actually so, thenQl(x)50 would solve
Eq. ~2!, contradicting the supposition of nonexistenc
Q.E.D.

DG es
0,opt<0 FOR es˜`

Whenes→`, the potential in each solvent region is co
stant; exterior to all molecules it is taken to be zero. Beca
for the unbound receptor the conducting solvent inVl may
be insulated from the exterior solvent, the potential inVl
may be nonzero. However, grounding the solvent in this c
ity zeros its potential, lowering the free energy of the u
bound receptor. The potential onSr is now the same as it wil
be in the bound state because the potential onSl for a
complementary ligand will be zero in both the bound a
unbound ligand states. Therefore, the potential at all liga
receptor interfacial surface elements remains zero in
bound and grounded unbound states. The potentials actin
Ql(x) and Qr(x) are also unchanged due to the uniquen
theorem for Dirichlet boundary conditions@11,12#, so the
change in free energy for binding the grounded recepto
the ligand is zero andDG es

0,opt<0 with DG es
0,opt being the

~necessarily favorable! free energy change for grounding th
ligand cavity.

CASES WHEN DG es
0,opt<0 FOR es<`

Consider the change inDG es
0 when the solvent dielectric

constant is perturbed by the quantitydes . This is given by
the change in solvation free energy of the complex minus
change in solvation free energy of the two solute molecu
Because the perturbation is infinitesimal, Eq.~3! can be ap-
proximated by the first term in the sum, so the total chang
the binding free energy is

DDG es
0 '

2des

8p F E
V̄c

dxuEc
0~x!u22E

V̄l

dxuEl
0~x!u2

2 Ē dxuEr
0~x!u2G , ~7!
Vr
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whereEi
0(x) is the total electric field for molecule (i ) alone

in solvent before the perturbation.
The first set of geometries for which we show th

DG es
0,opt<0 for finite es requires that the unbound receptor

free of buried solvent regions~i.e., interior regions of solven
entirely disconnected from exterior solvent by the recep
cavity!. Generally, unless a buried solvent cavity is ve
large, any water molecules in the cavity are likely to
ordered and might be treated as part of the low-dielec
receptor. The lack of buried solvent in the unbound recep
implies that all bound-state solvent regions have comm
surface elements with the ligand. LetF(x)5Fc(x)2F l(x)
be the difference in the total potentials of the bound comp
and unbound complementary ligand states. Clearly,F(x)
50 ;xPVl from Eq. ~2!. Therefore,F(x) and its normal
derivative are zero onSl because they are continuous acro
Sl . By the harmonic continuation theorem@14#, the potential
F(x) in V̄c is a harmonic continuation ofF(x) in Vl and so
is zero. This implies thatFc(x)5F l(x) in V̄r and thatQr(x)
and Ql

comp(x) are image and inverse-image charge distrib
tions, respectively. The result of this is that the first tw
integrals of Eq.~7! partially cancel, leaving

DDG es
0 '

des

8p F E
V̄r

dxuEr
0~x!u21E

Vr

dxuEl
0~x!u2G , ~8!

which is negative for reducing the solvent dielectric consta
Furthermore, reoptimizing the ligand-charge distribution
ter the perturbation can only makeDDG es

0 more negative.
Thus,DG es

0,opt becomes monotonically more favorable ases

is reduced. Together with the fact thatDG es
0,opt<0 for es

→`, we have thatDG es
0,opt<0 for this set of geometries

even withes finite.
The second set of geometries for which we show t

DG es
0,opt<0 for finite es requires that the ligand have no bu

ied solvent cavities~although the receptor may!. In this case
one could variationally optimize the receptor-charge dis
bution with respect to a particular ligand-charge distributi
by solving Eq. ~9!. Then, by the previous result,DG es

0,opt

would be favorable; however, we really want to specify t
receptor-charge distribution, not find it. So, if one can sh
that the target receptor-charge distribution is complemen
to some ligand-charge distribution, then the complement
ligand-charge distribution must bind at least as well as t
nonoptimal ligand-charge distribution andDG es

0,opt will be fa-
vorable.

This reduces to showing that for anyQr(x), there exists a
generalized image charge distributionQl(x) satisfying

E
Vr

dx Qr~x!@Gc~x,y!2Gr~x,y!#52E
Vl

dx Ql~x!Gc~x,y!

~9!

;yPVr . The existence proof proceeds similarly to that f
the complementary charge distribution. We first note that
set E5$2*Vl

dx Ql(x)Gc(x,y)%, defined asQl(x), takes on

all values, is a closed space of harmonic functions overVr ,
and we assume the existence of aQr(x) such that there is no
solution Ql(x) to Eq. ~9!. Without loss of generality, we
assume thatg(y)5*Vr

dx Qr(x)@Gc(x,y)2Gr(x,y)# over Vr

is in the orthogonal complementE' of E, implying
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*Vl
dx*Vr

dy g(y)Gc(y,x)Ql(x)50 ;Ql(x). As before,

ag(y) is treated as a receptor-charge distribution. Beca
the bound-state potential inVl due to ag(y) is zero, the
electric field there must also be zero. Generalizing Eqs.~3!
and ~4! for the receptor, we find that its desolvation pena
is zero and that the electric field and potential inVl in the
unbound state must also be zero. Because the potentialVl
is zero in both states, application of the electrostatic bou
ary conditions implies that the potential throughout spac
the same before and after desolvation. Thus,ag(y) is null,
satisfying

E
Vr

dx ag~x!@Gc~x,y!2Gr~x,y!#50 ~10!

;yPVr . Assuming thatag(x)Þ0 @for if it were zero, then
Ql(x)50 would be a solution to Eq.~9!#, we must have
a2*Vr

dx g2(x)Þ0 becauseg(x) is a harmonic function. This
implies that

a2E
Vr

dx dy g~x!@Gc~x,y!2Gr~x,y!#Qr~y!Þ0, ~11!

contradicting Eq.~10!. Therefore, the existence of the gene
alized image charge distribution is assured andDG es

0,opt<0
for these geometries as well.

MUTUAL COMPLEMENTARITY

The ligand- and receptor-charge distributions are mutu
complementary whenQr(x) is null or whenes→` and nei-
ther the unbound receptor nor the unbound ligand have
ied solvent cavities. In these cases the potential in the sol
is always zero and inVl it is the same in both the bound an
unbound complementary ligand states. Uniqueness
boundary conditions indicate that the potential inVr is also
the same, soQr(x) and Ql

comp(x) satisfy Eq.~9!, implying
that Qr(x) is complementary toQl

comp(x). In this case, both
the receptor- and complementary ligand-charge distributi
are images and inverse images of each other,DG es

0,opt50, and
oc
se

d-
is

ly

r-
nt

nd

s

nonunique image and inverse-image charge distributions
ist.

CONCLUSION

We have shown that charge optimization leads to a fav
able electrostatic contribution to the binding free energy
many cases of biophysical interest. The current proof is l
ited to cases in which the receptor and ligand do not b
have buried solvent cavities and to cases in which the solv
ionic strength is negligible. Generalizations to other ca
may be possible.

Inclusion of other effects not considered here leads
further enhancements to binding electrostatics. For exam
if the ligand and receptor cavities overlap in the bound sta
then the optimal electrostatic binding free energy will
even more favorable. Likewise, inclusion of conformation
change in the complex will improve the free energy of bin
ing if it is the unbound configurations that are modeled, as
relaxation must be favorable. Note that if the molecular s
faces are defined through use of a solvent probe molec
the complex cavity may be larger than the union of t
ligand and receptor cavities and these theorems will
strictly hold. However, when the additional volume is n
large or is distant from regions of high charge density,
binding free energy is expected to remain favorable.

In natural complexes,DG es
0 is usually unfavorable~posi-

tive!, suggesting that nature may not generally employ el
trostatics to enhance binding affinity~see@5#, and references
therein!. However, because optimization providesDG es

0,opt

<0, electrostatics could, in principle, be used to impro
affinity. In fact, it seems that significant gains in binding fr
energy may be obtained through the application of elec
static charge optimization@5,7,8,15#.
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